A Collocation Method with Modified Equilibrium on Line Method for Imposition of Neumann and Robin Boundary Conditions in Acoustics (TECHNICAL NOTE)
نویسندگان
چکیده مقاله:
A collocation method with the modified equilibrium on line method (ELM) forimposition of Neumann and Robin boundary conditions is presented for solving the two-dimensionalacoustical problems. In the modified ELM, the governing equations are integrated over the lines onthe Neumann (Robin) boundary instead of the Neumann (Robin) boundary condition equations. Inother words, integration domains are straight lines for nodes located on the Neumann boundary.Numerical examples of two-dimensional acoustical problems are presented to demonstrate thestability, accuracy and convergence of the proposed method.
منابع مشابه
A Collocation Method with Exact Imposition of Mixed Boundary Conditions
In this paper, we propose a natural collocation method with exact imposition of mixed boundary conditions based on a generalized Gauss-Lobatto-Legendre-Birhoff quadrature rule that builds in the underlying boundary data. We provide a direct construction of the quadrature rule, and show that the collocation method can be implemented as efficiently as the usual collocation scheme for PDEs with Di...
متن کاملA Boundary Meshless Method for Neumann Problem
Boundary integral equations (BIE) are reformulations of boundary value problems for partial differential equations. There is a plethora of research on numerical methods for all types of these equations such as solving by discretization which includes numerical integration. In this paper, the Neumann problem is reformulated to a BIE, and then moving least squares as a meshless method is describe...
متن کاملa boundary meshless method for neumann problem
boundary integral equations (bie) are reformulations of boundary value problems for partial differential equations. there is a plethora of research on numerical methods for all types of these equations such as solving by discretization which includes numerical integration. in this paper, the neumann problem is reformulated to a bie, and then moving least squares as a meshless method is describe...
متن کاملA modified collocation method and a penalty formulation for enforcing the essential boundary conditions in the element free Galerkin method
The Element free Galerkin method, which is based on the Moving Least Squares approximation, requires only nodal data and no element connectivity, and therefore is more ̄exible than the conventional ®nite element method. Direct imposition of essential boundary conditions for the element free Galerkin (EFG) method is always dif®cult because the shape functions from the Moving Least Squares approx...
متن کاملIMPOSITION OF ESSENTIAL BOUNDARY CONDITIONS IN ISOGEOMETRIC ANALYSIS USING THE LAGRANGE MULTIPLIER METHOD
NURBS-based isogeometric analysis (IGA) has currently been applied as a new numerical method in a considerable range of engineering problems. Due to non-interpolatory characteristic of NURBS basis functions, the properties of Kronecker Delta are not satisfied in IGA, and as a consequence, the imposition of essential boundary condition needs special treatment. The main contribution of this study...
متن کاملtechnical and legal parameters for determination of river boundary,( case study haraz river)
چکیده با توسعه شهر نشینی و دخل و تصرف غیر مجاز در حریم رودخانه ها خسارات زیادی به رودخانه و محیط زیست اطراف آن وارده می شود. در حال حاضر بر اساس آئین نامه اصلاح شده بستر و حریم رودخانه ها، حریم کمی رودخانه که بلافاصله پس از بستر قرار می گیرد از 1 تا20 متر از منتهی الیه طرفین بستر رودخانه تعیین، که مقدار دقیق آن در هر بازه از رودخانه مشخص نیست. در کشورهای دیگر روشهای متفاوتی من جمله: درصد ریسک...
15 صفحه اولمنابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ذخیره در منابع من قبلا به منابع من ذحیره شده{@ msg_add @}
عنوان ژورنال
دوره 23 شماره 1
صفحات 11- 22
تاریخ انتشار 2010-01-01
با دنبال کردن یک ژورنال هنگامی که شماره جدید این ژورنال منتشر می شود به شما از طریق ایمیل اطلاع داده می شود.
میزبانی شده توسط پلتفرم ابری doprax.com
copyright © 2015-2023